Effect of In-house Windrow Composting on Odors During Land Application

Scott Winkler¹, Daren Harmel², Terry Gentry³, Eddie Caraway⁴, Nathan Fuchs¹, and Craig Coufal¹

¹Department of Poultry Science, Texas A&M University, College Station, TX ²USDA-ARS, Temple, TX

³Department of Soil and Crop Sciences, Texas A&M University, College Station, TX ⁴Olfactometry Laboratory, West Texas A&M University, Canyon, TX

International Poultry Science Forum, January 28, 2012 Abstract M33

Introduction

- The 2010 Texas Integrated Report for Clean Water Act Sections 305(b) and 303(d) lists 621 impaired water segments in Texas.
 - ✤ 303 of the 621 are impaired for bacterial counts (*E. coli*) above acceptable limits for the designated water use.
 - Many water segments on the list are in poultry producing regions of Texas.
 - Implementation of Total Maximum Daily Loads (TMDLs) are a concern for producers and land owners.

Water Quality Concerns

- Much of the bacteria is thought to originate from runoff water from livestock producing areas or lands receiving application of manure.
- Previously published research has shown poultry litter samples from Texas contain 8.8 x 10^{10} *E. coli/g* of litter (Terzich et al. 2000).
- In 2011, Texas produced 630,500,000 broilers.
- Litter production is ~ 1 ton/1000 birds produced (Coufal et al. 2006).
- Therefore, ~ 630, 500 tons of litter are produced in Texas annually, most of which is land applied.

Nuisance Issues

- Recent expansion of the poultry industry and rural development has led to an increase in nuisance odor complaints.
- Senate Bill 1693
 - Passed by the Texas Legislature in 2009.
 - Purpose was to address odor issues from poultry farms and litter application.
 - × Siting requirements for new or expanding farms
 - ★ Requires state agencies to respond to odor complaints within 18 hours
 - Requires record keeping to track where poultry litter is transported and applied

In-House Windrow Composting (IWC)

- Therefore, best management practices (BMP) need to be developed to address the potential impacts to runoff water quality and nuisance odors from the land application of poultry litter.
- In-house windrow composting (IWC) is a practice already commonly used by the poultry industry to manage litter between grow-outs.

Previous Research

- When done correctly, IWC of litter can significantly reduce the bacterial load when compared to uncomposted litter (Macklin et al., 2008).
- Trial 1 of a 3-year study was conducted in the fall of 2011, and results were previously reported (Winkler et al., 2012).
- Air samples from litter were analyzed for 13 volatile odorants commonly associated with animal manure using GC/MS.
 - ✤ 6 odorants were lower with IWC litter compared to raw litter.
 - * The other 7 odorants were greater.
- Results showed that the use of IWC does not eliminate odors at land application, but does have the ability to alter the odor profile.

Trial 1 Odorants (Winkler, et al. 2012)

Compound	Description	Detection Threshold (mg/m ³)	Treatment ¹	Concentration (ng/L)	OAV ²	Percent Difference	P-Value
Proprionic	Body		Raw	5.86	16.76		
Acid	odor; vomitus	0.350	IWC	4.31	12.32	-26.51	0.57
Phenol	Medicinal	0.734	Raw	41.73	56.85	-56.76	0.38
Flielloi	; floral	al 0.754	IWC	18.05	24.58		
P-cresol	Barnyard	0.010	Raw	15.26	1,573.44	-53.87	0.42
r-ciesoi			IWC	7.04	725.89		
4-	Spice;		Raw	4.83	0.37		
ethylphenol	horse manure	13.000	IWC	1.27	0.10	-73.76	0.30
. 2'-	Bat cave;	0 - 1 1	Raw	1.75	3.41	-78.66	- 1 -
aminoaceto phenone	taco shell	0.514	IWC	0.37	0.73		0.17
Indole	Piggy;	Piggy;	Raw	1.18	307.43	-97.38	0.11
IIIUUIC	musty	musty 0.004	IWC	0.03	8.05		

 1 n = 3 samples per treatment

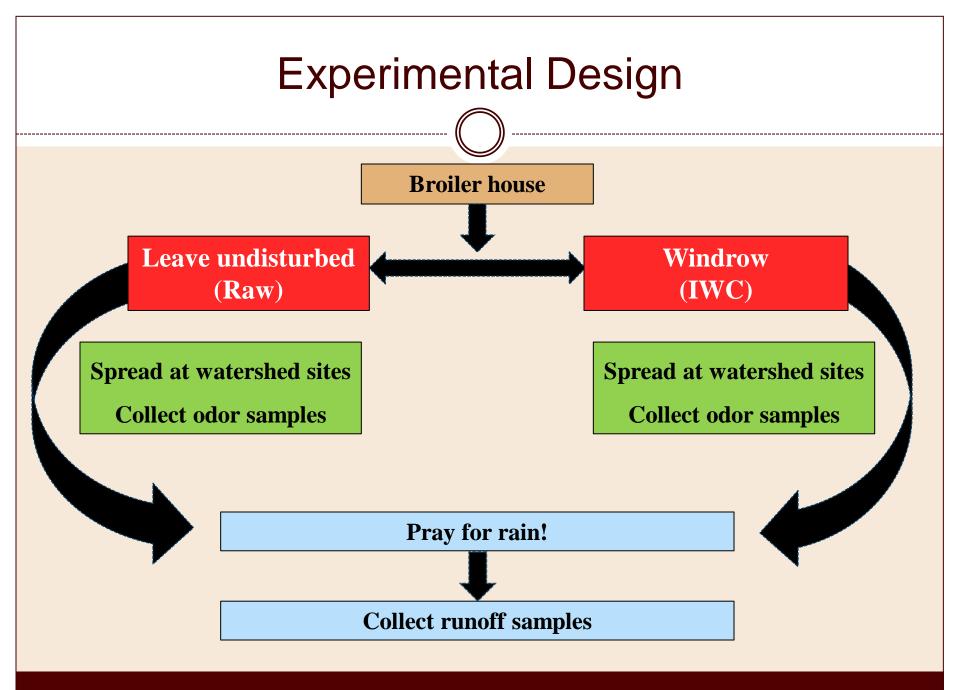
² OAV = concentration/detection threshold

Trial 1 Odorants (Winkler, et al. 2012)

Compound	Description	Detection Threshold (mg/m ³)	Treatment ¹	Concentration (ng/L)	OAV ²	Percent Difference	P-Value	
Acetic	Sour;	2.030	Raw	2.14	1.05	41.9	0.65	
Acid	vinegar	2.030	IWC	3.04	1.50	41.9	0.05	
Butyric	Body odor;	0.034	Raw	2.47	72.77	324.6	0.13	
Acid	vomitus	0.034	IWC	10.48	308.99	524.0	0.13	
Isobutyric	Rancid;	0.123	Raw	5.55	45.32	1,163.9	0.00	
Acid	butter	0.125	IWC	70.16	572.77			
Valeric	Equ1	0.026	Raw	1.93	53.19	11.8	0.86	
Acid	Foul	0.036	IWC	2.16	59.49			
Isovaleric	Foul/sweat;	0.007	Raw	3.61	555.36	57 0	0.60	
Acid	buttery	0.007	IWC	5.70	876.88	57.8	0.69	
Hexanoic	E a a 1	0.190	Raw	7.14	39.57	01 5	0.20	
acid	Foul	0.180	IWC	12.96	71.82	81.5	0.30	
Clastals	Outhouse;	Outhouse;	Raw	0.33	146.66	10.0	0.76	
Skatole	fecal	fecal 0.002	0.002	IWC	0.39	174.27	18.8	0.76

 1 n = 3 samples per treatment

² OAV = concentration/detection threshold


- Evaluate the effectiveness of in-house windrow composting of poultry litter prior to land application as a BMP to reduce bacteria in runoff and influence volatile odorants.
 - * Enumerate *E. coli* in litter and runoff water samples from land application sites.
 - * Determine the influence of IWC on volatile odorants.

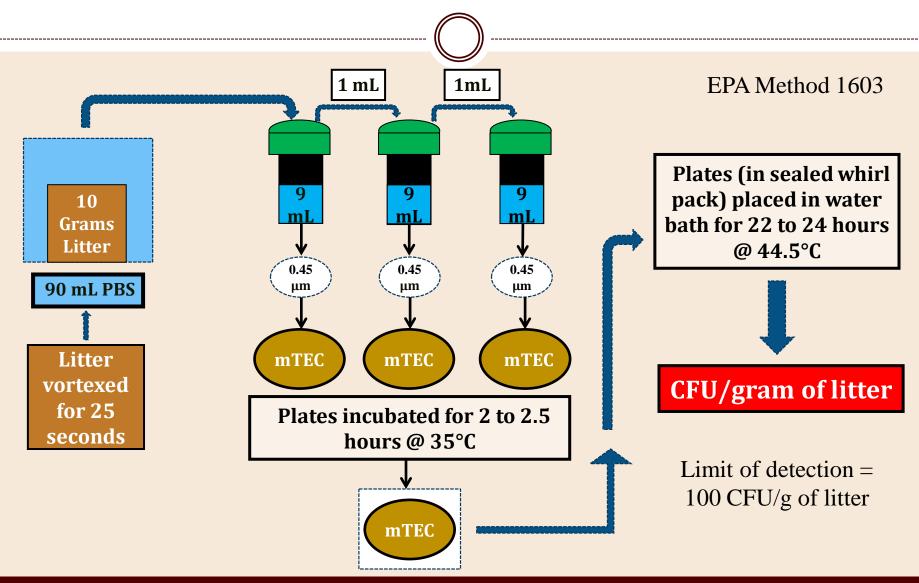
Hypothesis

• The process of in-house windrow composting of poultry litter prior to land application can be used as a best management practice to help mitigate *E. coli* counts in litter prior to land application and reduce the potential for nuisance odor complaints.

TAMU POSC Litter Windrowing Implement

Materials and Methods IWC litter for application Raw litter (control) Windrows were turned on day 4

Materials and Methods


• On the 9th day after the windrows were formed, 20 tons of each type of litter were transferred on separate loads to the USDA-ARS watershed site in Riesel, Texas.

Materials and Methods

- Litter samples were collected prior to windrowing at the farm and just prior to land application.
 - Samples were delivered to the TAMU Dept. of Soil and Crop Sciences – Soil and Aquatic Microbiology Lab for bacterial analysis (n = 6).
 - ★ *E. coli* was enumerated using EPA method 1603 and results were provided as CFU/gram of litter.
 - Samples were then transferred to the TAMU Soil, Water and Forage Testing Lab for nutrient analysis (n = 6).

Litter E. Coli Enumeration Process

Materials and Methods

- Volatile odorants were collected on sorbent tubes using wind tunnel flux chambers placed directly on litter piles.
 - * Concentrations of 13 odorants were assessed using GC/MS.
- 2 types of air samples were collected into Tedlar bags for olfactometry analysis by human panelists.
 - Directly from litter piles using the wind tunnel flux chambers
 - Ambient air from the middle of each application field
 - ➤ GC/MS and olfactometry analysis conducted at West TAMU Olfactometry Laboratory.

Materials and Methods

• Litter was land applied at 3 tons/acre to separate, nonadjacent fields.

- *E. coli* litter counts
 - * No statistical analysis conducted due to very low counts.
- Nutrient values and odorant concentrations
 - One-way Analysis of Variance using the General Linear Model (GLM) procedure in SPSS.
 - ♦ Means were considered significantly different at P ≤ 0.05.

E. Coli Results

Year	Treatment	<i>E. coli</i> prior to windrowing (day 0)	E. coli post windrowing (day 9)
Trial 1	Raw	<100	<100
(2011)	IWC	<100	<100
Trial 2 (2012)	Raw	<100	185
	IWC	<100	<100

Results recorded in CFU/gram of litter

Litter Nutrient Analysis

Year	Treatment	Nitrogen	Phosphorus	Potassium	Calcium
Trial 1	Raw	3.51	1.93	3.20	4.21
(2011)	IWC	3.55	1.74	3.15	3.59
Trial 2	Raw	3.44	1.78	3.42	3.60
(2012)	IWC	3.58	1.83	3.40	3.53

All data is calculated on dry matter basis No statistical differences observed

Sorbent Tube GC/MS Results Trial 2

Compound	Description	Detection Threshold (mg/m ³)	Treatment ¹	Concentration (ng/L)	OAV ²	Percent Difference	P-Value
Hexanoic	Foul	0.180	Raw	0.59	3.26	2 522 46	0.021
acid	Tour	0.100	IWC	21.29	118.30	3,533.46	
Dh an al	Medicinal;	0.724	Raw	6.49	8.84	45.80	0.006
Phenol	floral	0.734	IWC	9.45	12.88		0.000
D arragal	Domesond	0.010	Raw	0.14	13.63	2,752.68	0.069
P-cresol	Barnyard	0.010	IWC	3.89	388.95		
2'-	Bat cave;	0.514	Raw	3.60	7.01	71.82	0.144
ophenone	aminoacet ophenone taco shell	0.514 IWC	IWC	6.19	12.04		
Skatole	Outhouse;	Outhouse; fecal 0.002	Raw	0.31	153.94	980.42	0.000
Skalole	,		IWC	3.33	1,663.18		0.000

 1 n = 3 samples per treatment

² OAV = concentration/detection threshold

Sorbent Tube GC/MS Results Trial 2

Compound	Description	Detection Threshold (mg/m ³)	Treatment	Concentration (ng/L)	OAV	Percent Difference	P-Value
Acetic acid	Sour;	2.030	Raw	7.63	3.76	-77.15	0.013
Actic acid	vinegar	2.030	IWC	1.75	0.86	-77.13	0.015
Proprionic	Body odor;	0.350	Raw	33.63	96.09	-38.83	0.065
acid	vomitus	0.350	IWC	20.57	58.78	-30.03	0.005
Dutyria agid	Body odor;	0.024	Raw	1.11	32.60	06.97	0.065
Butyric acid	vomitus	0.034	IWC	0.03	1.02	-96.87	0.005
Isobutyric	obutyric Rancid;	0.123	Raw	0.97	7.90	-82.84	0.001
acid	butter	0.125	IWC	0.17	1.36		
Valeric acid	Eaul	Foul 0.036	Raw	71.09	1,974.87	-85.11	0.000
valenc aciu	Foul	0.030	IWC	10.59	294.03	-83.11	0.000
Isovaleric	Foul/sweat;	0.007	Raw	1.56	222.57	-59.09	0.018
acid buttery	buttery	tery 0.007	IWC	0.64	91.06	-39.09	0.018
4-	Spice; horse	12,000	Raw	3.25	0.25	2.41	0.024
ethylphenol	manure	13.000	IWC	3.12	0.24	-2.41	0.934
Indolo	Piggy;	0.004	Raw	12.07	3,017.29	-13.99	0.276
Indole	musty	0.004	IWC	10.38	2,595.14		

Trial 1 vs Trial 2						
Compound	Treatment	Trial 1 (OAV)	Trial 2 (OAV)			
Havensis said	Raw	7.1	3.2			
Hexanoic acid	IWC	12.9	118.3			
Chatala	Raw	146.6	153.9			
Skatole	IWC	174.27	1,663.2			
Dranciania Asid	Raw	16.8	96.1			
Proprionic Acid	IWC	12.3	58.8			
4 othulnhonol	Raw	0.3	0.3			
4-ethylphenol	IWC	0.1	0.2			
Indolo	Raw	307.4	3,017.3			
Indole	IWC	8.0	2,595.1			

OAV = concentration/detection threshold

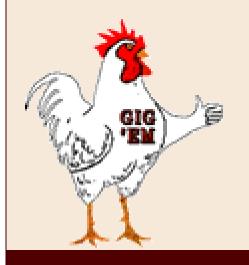
Olfactometry Samples Trial 2

Wind tunnel samples fro		
Treatment ¹	Detection Threshold Value (OU/m ³)	Average
Raw	4,082	4,082
	sample error	7,002
IWC	2,030	1,731
IVVC	1,432	1,751
Air samples in field		
Raw	1,011	1,220
Kaw	1,429	1,220
IWC	602	428
	254	420

 1 n = 2 samples per treatment

Summary and Conclusions

- *E. coli* numbers in IWC litter were lower compared to raw litter in Trial 2 at the time of litter application.
 - * Thus, IWC has the potential to be a BMP to reduce *E. coli* counts in litter prior to land application.
- Odor data:
 - * Differences in concentration of certain compounds were noted.
 - Olfactometry data indicated that IWC of litter resulted in lower odor concentration as perceived by human panelists.
 - Thus, IWC has the potential to be a BMP to reduce odors from litter during land application.


Future Research

- Sample and test litter from various locations to determine presence of *E. coli*.
- Conduct additional windrowing trials to gather more data on effects on odors.

Effect of In-house Windrow Composting on Odors During Land Application

THANK YOU!

http://windrowlitter.tamu.edu

